
Subpixel super resolution algorithm for
PALM microscopy

M. Gostiaux Gabriel
M. Gabriel Gostiaux, Master of Science student, Institute of Optics,

Palaiseau, 91 120, France
gabriel.gostiaux@institutoptique.fr

https://github.com/GabrielGst?tab=repositories

Abstract: In this study, we introduce a computationally efficient approach
for generating super-resolution frames in Photoactivated Localization Mi-
croscopy (PALM) by accelerating the processing pipeline. The method is
designed to optimize both the localization accuracy and processing speed,
making it particularly suitable for medium-large datasets.
Keywords: PALM Microscopy, sub-pixel superresolution, python.
OCIS codes: (000.0000) General.

References and links
1. F. Goudail, “Fundamental of Estimationa and Detection,” IOGS chap. 5, 59–69 (2023).
2. F. Goudail, D. Bloch, O. Leveque, “FED labworks and projects,” IOGS lab 3-4-5, (2024)
3. T. Molle Heredia, M. Denain, “Microscopie PALM,” IOGS sect. 2.2, 2.3 4–5, (2023)

1. Introduction

PALM (Photoactivated Localization Microscopy) is a high-resolution imaging technique that
surpasses the diffraction limit. It relies on the isolation of emitters selectively tagged with a
fluorescent molecule, and the fitting of their Point Spread Function (PSF). The fluorescent
molecules emit light when stimulated by a laser. This approach enables the precise localization
of isolated emitters with an accuracy beyond the Rayleigh criterion, thus providing ”super-
resolution” down to around 10 nm. This technique, developed by Eric Betzig and his team
in 2006, was awarded the Nobel Prize in Chemistry in 2014. It is of great importance due to
its ability to enhance the resolution of existing images. Because this method is implemented
with noisy frames, one should rely on estimation and detection theory to retrieve the precise
coordinates of the emitters.

The workflow begins with a rigorous noise analysis of acquired frames, enabling the subse-
quent likelyhood computation steps to operate with enhanced precision. Our algorithm lever-
ages a matched filter for likelihood calculation across frames, a critical step in improving com-
putation time.

To accelerate the localization process, we identify initial guesses for molecule positions us-
ing a simple peak detection strategy via the numpy.max function. This initial estimation sig-
nificantly reduces the computational complexity at the cost of sacrificing accuracy. For precise
sub-pixel localization, we then employ the Maximum Likelihood Estimator (MLE) method,
with optimization executed through the scipy.fmin function. This choice provides a computa-
tional efficiency and high-resolution localization, as it can then swiftly converges to optimal
coordinates.

2. Precision analysis

We have a test image presenting 10 PSF and an array containing the true coordinates of the
emitters producing such PSF. In this section we present the analysis of the noise and the influ-
ence of the imaging parameters (location of the emitters onto the pixel array and PSF FWHM).

The data used in this study is stored as .mat files which can be loaded in our python environ-
ment through the function loadmat of the dependency scipy.io.

2.1. Noise analysis

Because the acquired frames are noisy, one should begin by understanding the noise before
going forward in the computation of the likelyhood. So, we start by extracting a noisy region of
the test image (see Fig. 1, one could have used a frame from the PALM sequence equivalently),
and after flattening the array, we plot it as a 1D signal (see Fig. 2a and Fig. 2b).

Fig. 1: Test Image

This unidimensional signal seems to present a gaussian noise, so we plot a histogram of its
values because if we are right, we want to fit a gaussian curve to it to determine its amplitude,
mean and standard deviation.

(a) Noise (b) Noise 1D

Fig. 2: Noise

The histogram confirms that the noise is gaussian, and we obtain its parameters through the
fitted curve: [a = 0.06,m = 0.06,σr = 5.78]. We then plot the cross correlation of the noise with
itself to observe its spatial coherence : since the FWHM length is one (1) pixel, we understand
that the noise is white.

(a) Noise histogram (b) Noise correlation

Fig. 3: Noise properties

This preliminary analysis concludes that the acquired frames are polluted by a white normal
noise of parameters [a = 0.06,m = 0.06,σr = 5.78] that will be of use in the computation of
likelyhood.

2.2. Accuracy analysis

For simplicity reasons and without any loss of generality, we consider the location from a 1D
point of view. Let x be the spatial coordinate, θ the position of an emitter. It is then assumed that
the signal given by this single emitter on the image plan can be written as s(x,θ) = ar(x,θ)+b
where r is a Gaussian function centered on θ so that

r(x,θ) =
1√

2πσr
exp
[
− (x−θ)2

2σ2
r

]
(1)

where σr = w/(2
√

2ln(2)) is expressed as a function of the full width at half maximum
(FWHM) w of the signal on the sensor. In this study, b is assumed to be an additive normal
white noise of standard deviation σb.

We define ri the integration of r(x,θ) over the pixel i with i ∈ [0,N −1]

ri =
∫ (i+1)∆x

i∆x
r(x,θ)dx (2)

where ∆x is the discretization step. We can then computes the expression of ri as a function
of the parameters θ and w. We remind that

2√
π

∫ z

0
e−u2

du = erf(z)

Let’s compute ri with a integration by substitution :

ri =
∫ (i+1)∆x

i∆x

1√
2πσr

× exp

[
−
(

x−θ√
2σr

)2
]

dx (3)

=
1√

2πσr
×
√

2σr

∫ u+

u−
e−u2

du (4)

=
1√
π

[∫ u+

0
e−u2

du−
∫ u−

0
e−u2

du

]
(5)

ri =
1
2

[
erf
[
(i+1)∆x−θ√

2σr

]
− erf

[
i∆x−θ√

2σr

]]
(6)

Our goal is to estimate the parameter θ0 that maximizes the gaussian signal.

2.3. Position estimation without nuisance parameter: a known

Here, a is known and equal to 1. The samples are statisticcally independent, they follow a
normal probability law described in equation 7 which leads to the expression 8 for the log-
likelyhood. We then compute the derivative along θ to equal expression 9 to zero in order to
find the estimator of θ , θ̂ML.

P(si) =
1√

2πσb
exp

[
− (si −ari)

2

2σ2
b

]
(7)

lθ =−N × ln
(√

2πσb

)
− 1

2σ2
b

∑
si∈Ω

(si −ari)
2 (8)

∂ lθ
∂θ

=
1

σ2
b

∑
si∈Ω

(si −ari)×a× ∂ ri

∂θ
(9)

The derivativve let appear the derivative of ri along θ which is :

∂ ri

∂θ
=− 1√

2πσr
×

[
exp−

(
(i+1)∆x−θ√

2σr

)2

− exp−
(

i∆x−θ√
2σr

)2
]

(10)

Because expression 9 does not have any analytical solution, we solve it numerically using
the fmin function from scipy.optimize dependency. We then choose a parameter θ0 = 41.0050
to estimate and we evaluate the bias and the variance of its associated estimator θ̂ML by using a
Monte Carlo simulation over 10 000 iterations.

Here we present the results of [3] because ours (produced in lab 3, [2]) cannot be computed at
the moment of the redaction of this report. The presented bias is −3.210e−04 and the presented
variance is 2.352e−04. In regard of the computed bias, we assume the estimator non-biased.

We then compute the Cramer Rao Lower Bound (CRLB) to see if the variance of the es-
timator reaches the CRLB. In this case, the estimator θ̂ML can be defined as efficient. In that
purpose, we computes the second derivative of lθ along θ (expression 11) and computes its
mean (expressions 12 and 13).

∂ 2lθ
∂ 2θ

=− 1
σ2

b
∑

si∈Ω

(
−a
(

∂ci

∂θ

)2

− (si − ri)
∂ 2ri

∂ 2θ

)
(11)

〈
∂ 2lθ
∂ 2θ

〉
=− 1

σ2
b

∑
si∈Ω

(
−a
(

∂ ri

∂θ

)2

− (⟨si⟩−αri)
∂ 2lθ
∂ 2θ

)
(12)

〈
∂ 2lθ
∂ 2θ

〉
=

a
σ2

b
∑

si∈Ω

(
∂ ri

∂θ

)2

(13)

To obtain the CRLB, we then take the negative inverse of the computed mean to finally get
its expression :

CRLB =−
σ2

b
1

×

(
∑

si∈Ω

(
∂ ri

∂θ

)2
)−1

(14)

CRLB = 2πσ
2
b σ

2
r ×

(
∑

si∈Ω

(
e−u2

+ − e−u2
−
)2
)−1

(15)

Fig. 4: CRLB as a function of θ

The result presented in the study is 2.568e−04 so that we conclude the estimator is efficient
[3]. Because the estimator is non-biased and because it belongs to the exponential family, one
could have predicted thoses results [1].

2.4. Position estimation with nuisance parameter: a unknown

In the case where a is unknown, one should first estimate its value in order to estimate the
location (θ). We set a as a parameter in the expression of the log-likelyhood.

l(a,θ) =−N ln
(√

2πσb

)
− 1

2σ2
b

N−1

∑
i=0

(si −ari)
2 (16)

We then computes the derivative along a to find the MLE âML :

∂ l
∂a

∣∣∣∣
a−âML

=
1

σ2
b

N−1

∑
i=0

ri(θ)(si − âMLri(θ)) = 0 (17)

We get :

âML =
∑

N−1
i=0 siri(θ)

∑
N−1
i=0 ri(θ)2

(18)

Now, we inject this expression in equation 8. As before, we solve it numerically. We then
choose a parameter to estimate and we evaluate the bias and the variance of its associated esti-
mator θ̂ML by using a Monte Carlo simulation over 10 000 iterations. Again (and for the same
reasons as mentioned above), we present here the results of [3]. The measured bias 6.998e−05
is and the measured variance is 2.424e−04. Again, the estimator is non biased, and because it
belongs to the exponential family, we expect it to reach the CRLB.

In this mean, we start by computing the Fisher Information matrix :

I(a,θ) =
[

A B
C D

]
(19)

With the following coefficients :

A =
1

σ2
b

N−1

∑
i=0

ri(θ)
2 (20)

B =
1

σ2
b

N−1

∑
i=0

âMLri(θ)
dri

dθ
(21)

C = B (22)

D =
1

σ2
b

N−1

∑
i=0

â2
ML

[
dri

dθ

]2

(23)

Because I(a,θ) is invertible [1], we compute J(a,θ) = I(a,θ)−1. The CRLB is given by the
coefficient (2,2) of matrix J, so that :

CRLB(θ) =
A

AD−BC
(24)

The results presented in [3] suggest that no matter the knownledge of a, the estimator θ̂ML is
efficient.

3. Implementation of the algorithm

We have a sequence of 999 frames each containing 10 PSF spreaded over the frame. We are
presented with the 999 frames overlayed so that it produces a blurred image (see Fig. 5) which
seems to be a text. Our goal is to extract precisely the locations of the emitters producing the
PSF and to arrange them into a super-resoluted grid (say 10 times wider).

Fig. 5: Image floue

To compute the Maximum Likelyhood Estimator (MLE), one should first define the model
function. Here, it will be a two-dimensional gaussian function as defined in 1D in subsection
2.2. Thus, we have the following model function, after pixel-wide integration :

ri j (θx,θy) =
1
4

[
erf
(
(i+1)−θx√

2 ·σr

)
− erf

(
i−θx√

2 ·σr

)]
×
[

erf
(
(j+1)−θy√

2 ·σr

)
− erf

(
j−θy√
2 ·σr

)] (25)

With that in mind, we can proceed to compute the log-likelyhood :

l (θx,θy) =−I · J · ln
(√

2πσb

)
− 1

2σ2
b

I−1

∑
i=0

J−1

∑
j=0

(si j −ari j)
2 (26)

This function will unravel its full capacity when adressing the optimization step. However, in
regard to the computation time improvement, we will proceed in computing the log-likelyhood
through the ambiguity function using the matched filter. The matched filter, computed as a
correlation in Fourier’s domain between a model function centered in its frame and the 999
acquired images, is 10 times faster than the numerical computation with the analog expression
of equation 26.

We can then export the 999 log-likelyhood arrays to import them later. They will be refered
to as frames from now on.

On each frame, we first locate the 10 pixel-scale global maxima and store them in a list
as initial guesses for the solving function. Then, we use the fmin solving function from
scipy.optimize module to locate the local maxima in a sub-pixel scale. This workflow allows
to compute the log-likelyhood function according to its analog expression only in a neigh-

bourhood of the global maxima, which significantly reduces the computation time. We plot the
initial guesses and the super-resoluted emitters coordinates on Fig. 6.

Fig. 6: Evaluation of algorithm acccuracy

The coordinates seems relevant in a significant subset of the acquire image, therefore we de-
cide now to proceed to the analysis of the 999 acquired images. On Fig. 7a, one could recognize
the shape of the blurred image, suggesting that the maxima should be well computed (at pixel
scale and therefore at sub-pixel scale too). Fig. 7b shows reconstruction on its way. . .

(a) Initial guesses (b) Solving...

Fig. 7: Computing pix and subpix coordinates

The algorithm finally produces Fig. 8 on which one could read a passage of the famous
”Romeo and Juliette” piece written by M. William Shakespeare. This proves the described fast-
algorithm still produces super-resoluted frames without significant loss in accuracy compared to
the basic ones. The figure was produced in fifteen (15) minutes total, including five (5) minutes
of log-likelyhood computation and export, and ten (10) minutes of super-resolution estimation,
on custom desktop hardware including intel core i7 14700KF processor and NVIDIA RTX
4060 Ti 8Gb graphic card (which was not used for computation).

Fig. 8: Super resolution image

4. Conclusion

This study presented a specific workflow to optimize computation time for PALM microscopy.
The proposed method consist in using a matched filter to compute and save the log-likelyhood
arrays from the acquired frames, then use the numpy max function on those to find pixel-wide
initial guesses for the scipy fmin optimization function. The time efficiency is then improved
by a factor of 10, leading to compute the super-resoluted image presented at the end of section
2 in 10 minutes, while it was expected to be computed in 100 minutes with the basic fmin MLE
optimization method.

The workflow produces a super-resoluted image on which one could read a passage of the
famous ”Romeo and Juliette” piece written by M. William Shakespeare, proving the accuracy
of the method.

List of Figures

1 Test Image . 2
2 Noise . 2
3 Noise properties . 3
4 CRLB as a function of θ . 5
5 Image floue . 7
6 Evaluation of algorithm acccuracy . 8
7 Computing pix and subpix coordinates . 8
8 Super resolution image . 9

	Introduction
	Precision analysis
	Noise analysis
	Accuracy analysis
	Position estimation without nuisance parameter: a known
	Position estimation with nuisance parameter: a unknown

	Implementation of the algorithm
	Conclusion

